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Trace formula for noise corrections to trace formulas
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We consider an evolution operator for a discrete Langevin equation with a strongly hyperbolic classical
dynamics and Gaussian noise. Using an integral representation of the evolution operatorL, we investigate the
high-order corrections to the trace ofL n. The asymptotic behavior is found to be controlled by subdominant
saddle points previously neglected in the perturbative expansion. We show that a trace formula can be derived
to describe the high-order noise corrections.
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In the statistical theory of dynamical systems the dev
opment of the densities of particles is governed by a co
sponding evolution operator. For a repeller, the leading
genvalue of this operatorL yields a physically measurabl
property of the dynamical system, the escape rate from
repeller. In the case of deterministic flows, the periodic or
theory @1,2# yields explicit and numerically efficient formu
las for the spectrum ofL as zeros of its spectral determina
@3#.

Stochastic processes of various strength have an influ
on all dynamical evolutions. In a series of papers@4–7# the
effects of noise on measurable properties such as dynam
averages in classical chaotic dynamical systems were
tematically accounted for. The theory developed is clos
related to the semiclassical\ expansions@8–10# based on
Gutzwiller’s formula for the trace in terms of classical pe
odic orbits@11# in that both are perturbative theories in th
noise strength or\, derived from saddle-point expansions
a path integral containing a dense set of unstable statio
points. The analogy with quantum mechanics and fi
theory is made explicit in@4# where Feynman diagrams a
used to find the lowest nontrivial noise corrections to
escape rate.

In @6# we developed an explicit matrix representation
the stochastic evolution operator. The numerical implem
tation made it possible to reach up to order eight in exp
sion order, and the corrections to the escape rate were fo
to be a divergent series in the noise expansion param
This reflects that the corrections were calculated~using the
so-called cumulant expansion! from other divergent quanti
ties, the traces of the evolution operatorL n @6#.

In @7# the focus was on the high-order noise correctio
for the special case of the first trace, TrL. The asymptotics
of the trace of the evolution operator were governed by s
dominant saddles previously neglected in the expansion

In this paper we show that the high-order noise corr
tions of TrL n are also dominated by subdominant saddl
These subdominant saddles can be treated as generalize
riodic orbits of the system and we associate them with p
odic orbits of corresponding discrete Newtonian equation
motion. Our key result is Eq.~40! where the high-order nois
corrections are converted into a trace formula. We give a
numerical example the quartic map considered in@4–7#.
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First we introduce the noisy repeller and its evolution o
erator. An individual trajectory in the presence of additi
noise is generated by iterating

xn115 f ~xn!1sjn , ~1!

where f (x) is a map,jn a random variable with the norma
ized distributionp(j), ands parametrizes the noise strengt
In what follows we shall assume that the mappingf (x) is
one-dimensional and expanding, and that thejn are uncorre-
lated. A density of trajectoriesf(x) evolves with time on the
average as

fn11~y!5~L+fn!~y!5E dxL~y,x!fn~x!, ~2!

where theL evolution operator has the general form

L~y,x!5ds@y2 f ~x!#,

ds~x!5E d~x2sj!p~j!dj5 ~1/s! p~x/s!. ~3!

For the calculations in this paper Gaussian weak noise
assumed. In the perturbative limit,s→0, the evolution op-
erator becomes

L~x,y!5 ~1/A2ps! e2[ y2 f (x)] 2/2s2
. ~4!

The map considered here is the same as in our prev
papers, a quartic map on the (0,1) interval given by

f ~x!520@ 1
16 2~ 1

2 2x!4#. ~5!

Throughout the theory developed in previous works@4–7#,
the periodic orbits of the system played a major role. A p
riodic orbit of lengthn was defined simply by

xj 115 f ~xj !, j 51, . . . ,n ~6!

xn115x1 . ~7!

For a repeller the leading eigenvalue of the evolution o
erator yields a physically measurable property of the
namical system, the escape rate from the repeller. In the
of deterministic flows, the periodic orbit theory yields e
plicit formulas for the spectrum ofL as zeros of its spectra
determinant@3#. One of the most important goals of th
theory related to stochastic evolution operators is to exp
©2001 The American Physical Society04-1
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the dependence of the eigenvaluesn of L on the noise
strength parameters. The eigenvalues are determined by t
eigenvalue condition

F@s,n~s!#5det@12L/n~s!#50, ~8!

whereF(s,1/z)5det(12zL) is the spectral determinant o
the evolution operatorL, which can be expressed as

det~12zL!5expS 2(
n

`
zn

n
Tr L nD . ~9!

Equation~9! shows that noise dependence of the eigenva
of the evolution operator are very closely related to the no
dependence of the trace ofL n, which shall be the object o
study from now on.

The trace ofL n can be expressed as

Tr L n5
1

~A2ps!nE dx1dx2•••dxne2S/s2
, ~10!

where
S5

1

2 (
j 51

n

@xj 112 f ~xj !#
2, ~11!

xn115x1 . ~12!

In order to provide deeper insight into the forthcomi
calculations, we draw a correlation between discrete Ham
tonian mechanics and our system, with theS defined above
playing the role of the classical action. According to E
~11!, the least-action principle requires

xj2 f ~xj 21!2 f 8~xj !@xj 112 f ~xj !#50. ~13!

We define
pj5xj2 f ~xj 21!, ~14!

the quantity corresponding to the momentum in classical
chanics. From Eq.~13! we obtain

xj 115 f ~xj !1pj 11 , ~15!

pj 115pj /@ f 8~xj !# , ~16!

which are the equations corresponding to the classical N
tonian equations of motion. The generalized periodic orb
of length n are those orbits that obey these equations
xn115x1 , pn115pn . Those generalized periodic orbits th
have nonzero momentum will control the asymptotic beh
ior of the corrections to TrL n as we shall demonstrate late
The original periodic orbits defined by Eqs.~6! and ~7! are
those with zero momentum. The generalized periodic or
with nonzero momentum and the original periodic orbits p
liferate with growingn as suggested by Fig. 1.

We introduce an integral representation of the noisy k
nel, which will be of great use in the later calculations:

L~x,y!5 ~1/A2ps! e2[ y2 f (x)] 2/2s2

5
1

2pE dke2s2k2/21 ik[ y2 f (x)] . ~17!

Using this new integral representation,
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Tr L n5
1

~2p!nE dkndxnexpS 2s2/2 (
j 51

n

kj
21 i (

j 51

n

kj [xj 11

2 f (xj )] D , ~18!

or, equivalently,

Tr L n5
1

~2p!nE dknE dpnJ~p!expS 2s2/2 (
j 51

n

kj
2

1 i (
j 51

n

kj pj D , ~19!

whereJ(p)5D(x)/D(p) denotes the Jacobian. Since

1

~2p!nE dknexpS i (
j 51

n

kj pj D 5)
j 51

n

d~pj !, ~20!

we can reduce Eq.~19! to

Tr L n5E dpnJ~p!e~s2/2!D)
j 51

n

d~pj !5e~s2/2!DJ~p!upj 50 ,

~21!

whereD denotes the Laplacian

D5 ]2/]p1
21]2/]p2

21•••1]2/]pn
2 . ~22!

Our object of study is the Taylor expansion of Eq.~21! in the
noise parameter:

Tr L n5 (
N50

`

~Tr L n!Ns2N, ~23!

~Tr L n!N5~1/2N!~DN/N! !J~p!upj 50 . ~24!

TheNth power of the Laplacian in the equation above can
written as

DN5 (
j 1 , . . . ,j n50

`
N!

j 1! ••• j n!

]2 j 1

]p1
2 j 1

•••

]2 j n

]pn
2 j n

dN,(
k51

n

j k
, ~25!

FIG. 1. The sets of original and generalized periodic orbits. Squa
indicate original periodic orbits, dots indicate generalized periodic orb
large symbols indicate orbits of length one, small symbols indicate orbit
length two.
4-2



l-

in

ti

o
s

lta

s

to

are
t de-
dle

le
nce
o-
The

e

BRIEF REPORTS PHYSICAL REVIEW E 64 012104
whered j l is the Kronecker-delta. With the help of the mu
tidimensional residue formula from complex calculus@12#

]n11•••1nkf ~z!

]z1
n1
•••]zk

nk
5

n1! •••nk!

~2p i !k R
c1

••• R
ck

3
f ~j!dj1•••djk

~j12z1!n111
•••~jk2zk!

nk11
, ~26!

we obtain

~Tr L n!N5
1

~2p i !n2N (
j 1 , . . . ,j n50

`
~2 j 1!!

j 1!
•••

~2 j n!!

j n!

3dN,(
k51

n

j k
R

C1

••• R
Cn

J~p!dp1•••dpn

p1
2 j 111

•••pn
2 j n11 . ~27!

The contours are around thepj50 points. The integrals can
be transformed back to contour integrals in the originalxj
variables, and the contours will be placed around the orig
periodic orbits of the system defined by Eqs.~6! and ~7!,
since it is these orbits that fulfil thepj50 conditions. From
now on we shall restrict our calculations to the asympto
largeN limit. We will replace the summations in Eq.~27! by
integrals and then use the saddle-point method to get a c
pact formula for (TrL n)N . We approximate the factorial
via the Stirling formula@13# as

~2 j k!!

j k!
.

~2 j k/e!)2 j kA4p j k

~ j k/e! j kA2p j k

522 j k11/2j k
j ke2 j k521/2exp@2~ ln 2! j k1 j k ln j k2 j k#.

~28!

Using Eq. ~28! and an integral representation of the de
function, we get

~Tr L n!N. 2~n/2!2N/@~2p i !n2p#

3 (
j 1 , . . . ,j n50

` E dt R
c1

••• R
cn

dx1•••dxn

3expF i t S N2 (
k51

n

j kD 1~2 ln 221!(
k51

n

j k

1 (
k51

n

j k ln j k1 (
k51

n

ln@xk2 f ~xk21!#~2 j k11!G .

~29!

Now we replacej k with the new variablesyk5 j k /N and in
the asymptotic (N large! limit approximate the summation
for yk by integrals foryk as
01210
al

c

m-

~Tr L n!N.
2n/22NNn

~2p i !n2p
E

0

`

dy1•••E
0

`

dyn

3E dt R
c1

••• R
cn

dx1•••dxn

3expF i t S N2N(
k51

n

ykD 1N~2 ln 221!(
k51

n

yk

1N(
k51

n

yk ln~Nyk!1 (
k51

n

ln@xk2 f ~xk21!#

3~2Nyk11!G . ~30!

We evaluate they integrals with the saddle point method
get

~Tr L n!N.
22N1n/2

~2p!n/2i n2p
E dt R

c1

••• R
cn

dx1•••dxn

3expF i t S N1
n

2D2eit
S

2G . ~31!

Next we apply the saddle point method to the integral int as
well, asymptotically resulting in

~Tr L n!N.
N~n21!/2

22N11/2~2p!~n11!/2i n11

~2N!!

N!

3E dxne2(N1n/2)ln(S). ~32!

The last step is to evaluate the contour integrals in thexk
variables. We deform the contours until the saddle points
reached so the contours run along the routes of steepes
scent. The leading contribution comes from those sad
points that fulfil the following equation

~1/S! $xj* 2 f ~xj 21* !2@xj 11* 2 f ~xj* !# f 8~xj* !%50. ~33!

By comparing Eqs.~33! and~13! one can see that the sadd
points are all generalized periodic orbits of the system. Si
the contours ran originally around the orbits with zero m
mentum, these do not come into play as saddle points.
second derivative matrix is

2@N1~n/2!#~1/S!D2S, ~34!

whereD2S denotes the second derivative matrix ofS

~D2S! i j 5~]2S!/~]xi]xj ! . ~35!

This would be the matrix to deal with if we had taken th
saddle-point approximation of Eq.~10! directly. We reorga-
nize the prefactor in Eq.~32! with the use of the Stirling
formula @13# and the result of the saddle-point~sp! integra-
tion is written as

~Tr L n!N.(
sp

N~n21!/2

2p i

G~N1 1
2 !

@N1~n/2!#n/2

Sp
2N

AdetD2Sp

, ~36!
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which is our main result. Forn51 this formula gives the
result of @7# as it should.

Finally, we draw attention to the close connection b
tween the generalized periodic orbits of the system andD2S.
The stability matrix of a general periodic orbit~po! is ex-
pressed as

J5J1•J2•J3••••Jn , ~37!

Jk5S f 8~xk!2
pk

@ f 8~xk!#
2

f 9~xk!
1

f 8~xk!

2
pk

@ f 8~xk!#
2

f 9~xk!
1

f 8~xk!

D . ~38!

The determinant ofD2S can be expressed with the help
the stability matrix as

detD2Sp5det~Jp21!. ~39!

This way we reformulate Eq.~36! as

~Tr L n!N.
N~n21!/2

2p

G~N1 1
2 !

@N1 ~n/2!#n/2 (
po

e2N ln Sp

Adet~12Jp!
, ~40!

FIG. 2. The ratio of (TrL 2)N calculated via the asymptotic formula~36!
to its value computed by numerical integration.
y,

01210
-

where the summation runs over generalized periodic orb
with nonzero momentum. This is fully analogous to a tra
formula and is our main result.

Finally we turn toward testing our result obtained so f
In @7# we developed a contour integral method to calcul
high-order noise corrections to the trace ofL. We showed
that the agreement between the exact results and a form
that coincides with the Eq.~36! in the n51 case is very
good. Now we step ahead and produce numerically hi
order noise corrections to the trace ofL 2. We shall start
from Eq. ~27! by transforming the integrals inp back to
integrals inx as

~Tr L n!N5
1

~2p i !n2N (
j 1 , . . . ,j n50

`
~2 j 1!!

j 1!
•••

~2 j n!!

j n!

3dN,(
k51
n j k

R
c1

••• R
cn

3
dx1•••dxn

@x12 f ~xn!#2 j 111
•••@xn2 f ~xn21!#2 j n11

.

~41!

The contours at Eq.~27! were around thepj50 points, so
the contours above are placed around the original perio
orbits of the system, defined by Eqs.~6! and~7!. These con-
tour integrals can be evaluated numerically. Figure 2 sho
the ratio of (TrL 2)N obtained from Eq.~36! and evaluated
via the procedure described above as a function ofN.

In summary, we have studied the evolution operator fo
discrete Langevin equation with a strongly hyperbolic cla
sical dynamics and a Gaussian noise distribution. Using
integral representation of the evolution operatorL we have
revealed the asymptotic behavior of the corrections to
trace ofL n. This behavior is governed by subdominant term
corresponding to terms previously neglected in the pertur
tive expansion, and a fully analogous trace formula can
derived for the late terms in the noise extension series of
trace ofL n.
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