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Trace formula for noise corrections to trace formulas

Gergely Palld, Gabor Vattay, and AndreVoros®
IDepartment of Physics of Complex Systemsyd&oUniversity, Pamany Peer se¢any 1/A, H-1117 Budapest, Hungary
2CEA, Service de Physique Trigjue de Saclay F-91191 Gif-sur-Yvette CEDEX, France
(Received 3 October 2000; published 15 June 2001

We consider an evolution operator for a discrete Langevin equation with a strongly hyperbolic classical
dynamics and Gaussian noise. Using an integral representation of the evolution ogemomvestigate the
high-order corrections to the trace 6f". The asymptotic behavior is found to be controlled by subdominant
saddle points previously neglected in the perturbative expansion. We show that a trace formula can be derived
to describe the high-order noise corrections.
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In the statistical theory of dynamical systems the devel- First we introduce the noisy repeller and its evolution op-
opment of the densities of particles is governed by a correerator. An individual trajectory in the presence of additive
sponding evolution operator. For a repeller, the leading einoise is generated by iterating
genvalue of this opergtoﬂi yields a physically measurable Xns1=F(Xp) + &, (1)
property of the dynamical system, the escape rate from the
repeller. In the case of deterministic flows, the periodic orbitwheref(x) is a map,£, a random variable with the normal-
theory[1,2] yields explicit and numerically efficient formu- ized distributionp(£), ando parametrizes the noise strength.
las for the spectrum of as zeros of its spectral determinant In what follows we shall assume that the mappi(g) is
[3]. one-dimensional and expanding, and that§hare uncorre-

Stochastic processes of various strength have an influendated. A density of trajectorieg(x) evolves with time on the
on all dynamical evolutions. In a series of papets7] the  average as
effects of noise on measura_ble prope.rtles such as dynamical ¢n+1(Y)=(E°¢>n)(Y):J dx L(y,X) bn(X), )
averages in classical chaotic dynamical systems were sys-
tematically accounted for. The theory developed is closely _
related to the semiclassical expansiongd8—10Q based on where theL evolution operator has the general form

Gutzwiller's formula for the trace in terms of classical peri- Ly, X)=65Ly—f(x)],
odic orbits[11] in that both are perturbative theories in the
noise strength ofi, derived from saddle-point expansions of 5,,(x)=J S(X—=aé)p(&)dé= (1lo) p(x/ o). 3

a path integral containing a dense set of unstable stationary

points. The analogy with quantum mechanics and fielq=gr the calculations in this paper Gaussian weak noise is
theory is made explicit ii4] where Feynman diagrams are assumed. In the perturbative limit— 0, the evolution op-
used to find the lowest nontrivial noise corrections to thegrator becomes

escape rate. 2202
In [6] we developed an explicit matrix representation of L(x,y)= (1IN2ma) eV 10127, (4)

the stochastic evolution operator. The numerical implemen: . . . .
The map considered here is the same as in our previous

tation made it possible to reach up to order eight in expan- ers, a quartic map on the (0,1) interval given b
sion order, and the corrections to the escape rate were fourkg Pers: 2d P ' 9 y

to be a divergent series in the noise expansion parameter. f(x)=20&—(3—x)*4]. (5)
This reflects that the corrections were calculatesing the
so-called cumulant expansipfrom other divergent quanti- Throughout the theory developed in previous wofks 7],
ties, the traces of the evolution operatof [6]. the periodic orbits of the system played a major role. A pe-
In [7] the focus was on the high-order noise correctionsiodic orbit of lengthn was defined simply by
for the special case of the first trace, JrThe asymptotics i a=f(x), j=1 ©6)
of the trace of the evolution operator were governed by sub- i+l e J=4een
dominant saddles previously neglected in the expansion. Xnt1=X1 - (7)
In this paper we show that the high-order noise correc-
tions of Tr£" are also dominated by subdominant saddles. For a repeller the leading eigenvalue of the evolution op-
These subdominant saddles can be treated as generalized peator yields a physically measurable property of the dy-
riodic orbits of the system and we associate them with perinamical system, the escape rate from the repeller. In the case
odic orbits of corresponding discrete Newtonian equations obf deterministic flows, the periodic orbit theory yields ex-
motion. Our key result is Eq40) where the high-order noise plicit formulas for the spectrum of as zeros of its spectral
corrections are converted into a trace formula. We give as determinant[3]. One of the most important goals of the
numerical example the quartic map considere@4in7]. theory related to stochastic evolution operators is to explore
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the dependence of the eigenvaluesof £ on the noise
strength parameter. The eigenvalues are determined by the
eigenvalue condition

Flo,v(o)]=defl1-L/v(o)]=0, (8)

whereF(o,1/z) =det(1-zL) is the spectral determinant of
the evolution operatof, which can be expressed as

de(1—2£)=exp(—2 ZFTrL:“). (9)

Equation(9) shows that noise dependence of the eigenvalues
of the evolution operator are very closely related to the noise

dependence of the trace 6f", which shall be the object of
study from now on.
The trace of£" can be expressed as

Trﬁn—(\/_a)nf dx,dx;- - -dx,e” s, (10

where 1"
S=3 2 Dy fO)T°, (1
Xn+l:X1- (12)

In order to provide deeper insight into the forthcoming
calculations, we draw a correlation between discrete Hamil
tonian mechanics and our system, with ®eefined above
playing the role of the classical action. According to Eq.
(112), the least-action principle requires

Xj—F(Xj- 1) = F (X)X 41— F (X)) ]=
We define

13

Pj=x;—f(Xj-1), (14
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FIG. 1. The sets of original and generalized periodic orbits. Squares
indicate original periodic orbits, dots indicate generalized periodic orbits,
large symbols indicate orbits of length one, small symbols indicate orbits of
length two.

TrL= k“dx”exp( —02/2jél kP +i ;él Ki[X) 1
—f(x)] ) (18)
or, equivalently,
dkn dp”J(p)exp( —O'ZIZjil k?
n
+ij§=:1 kjpj), (19)

the quantity corresponding to the momentum in classical mewhereJ(p) =D(x)/D(p) denotes the Jacobian. Since

chanics. From Eq(13) we obtain
Xj+1=F(X) +pj+1,

Pj+1=p; /LT (X1,

(15
(16)

which are the equations corresponding to the classical New-
tonian equations of motion. The generalized periodic orbits Tr £"=
of length n are those orbits that obey these equations and

Xnt1=X1, Pnt1=Pn- Those generalized periodic orbits that
have nonzero momentum will control the asymptotic behav;
ior of the corrections to TE" as we shall demonstrate later.
The original periodic orbits defined by Eq®) and (7) are
those with zero momentum. The generalized periodic orbit
with nonzero momentum and the original periodic orbits pro-
liferate with growingn as suggested by Fig. 1.

We introduce an integral representation of the noisy ker-

nel, which will be of great use in the later calculations:
L(X,y)= (1/IN270a) e~ [y—f()1%20°

1 .
EJ dke oK 2+ikly = 1(0] (17)

Using this new integral representation,

jdk“exp(ijzl kjpj)=jljl s(py), (20

(2m)"

we can reduce Eq19) to

n
J dp"a(p)e” 2] a(p)=e"223(p)|, o,
j=1
(21)

whereA denotes the Laplacian

A= 3%19p2+ 3?1 op3+ - - - + %l Ip?. (22)

Our object of study is the Taylor expansion of E2[1) in the

noise parameter
TrLn= Z (Tr LM yo2N
(TrLMy= (1/2“‘)(A“'/N')J(p)|p Y

(23
(24)

The Nth power of the Laplacian in the equation above can be
written as
- (92J'1 9%n n

N i
apzln 'kzljk

N!

“Jn! &p (29
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where &, is the Kronecker-delta. With the help of the mul- oN2=NNN o
tidimensional residue formula from complex calculdg] (TrL")y=—"— f f dy,
(27" 27
g TN (Z) gl 3[; fﬁ
oo (2w T xf dt 55 gﬁcndxl---dxn
f(§)dé;- - -déy n
(E,—2)" L (£— 2L (26) Xexr{ N— NE Yi| +N(2In2— 1)2 Yk
n n
we obtain FND v In(Ny) + 2 In[xe—f(Xe_1)]
k=1 k=1
2j)! 2i)!
(Tr L)y = — i)t - ()
(2mi)"2N iy, =0 1! jn! X(2Ny,+1)|. (30)

J(p)d d
X Sy 2 i ﬁ; ﬁ; H (27) \g/]\(/e? evaluate thg integrals with the saddle point method to
N .

—N+n/2
TrL" = J’ é é dx;- - -dx
( )N (27T)n/2 no - ch 1

The contours are around tipg=0 points. The integrals can

be transformed back to contour integrals in the origixal n
variables, and the contours will be placed around the original Xexp{lt N+ |—et=|. (31)
periodic orbits of the system defined by E@6) and (7), 2 2

since it is these orbits that fulfil the;=0 conditions. From
now on we shall restrict our calculatlons to the asymptotic
largeN limit. We will replace the summations in ER7) by

Next we apply the saddle point method to the integralas
well, asymptotically resulting in

integrals and then use the saddle-point method to get a com- ; N(n=D72 (2N)!

pact formula for (TiL")y. We approximate the factorials (Tr L= QN2 gy 1 NI

via the Stirling formulg[13] as ™

(2100 (2] e)\am], [ weetenne, &3
I (jde)ky2my The last step is to evaluate the contour integrals inxpe

it 12 ke (e A2 o variables. We deform the contours until the saddle points are
=270 ke =2 exf 2(In 2) ji+ i I j—Jil- reached so the contours run along the routes of steepest de-
(28)  scent. The leading contribution comes from those saddle
points that fulfil the following equation
* * _v* * P * O\ —
Using Eg.(28) and an integral representation of the delta (L18) {xj =104 ) =[x 1= FX)IF ()} = 0. (33)

function, we get By comparing Eqs(33) and(13) one can see that the saddle

points are all generalized periodic orbits of the system. Since
the contours ran originally around the orbits with zero mo-
mentum, these do not come into play as saddle points. The

(Tr L™= 2"2"N/[(27i)"27]

X > dt § § dx, - - -dx, second derivative matrix is
S =0 e —[N+(n/2)](1/S)D3S, (34)
n n
Xexp{it( N—> j|+(2In2—-1)> j, whereD?S denotes the second derivative matrix®f
k= K=
' ' (D2S);, = (2S)/(a%;%;) . (35)

This would be the matrix to deal with if we had taken the
saddle-point approximation of E¢LO) directly. We reorga-
(29 nize the prefactor in Eq(32) with the use of the Stirling
formula[13] and the result of the saddle-poisp) integra-
tion is written as

n n
+k21 jk|njk+k21 IN[X— F(Xe—1)1(2j+ 1) |.

Now we replacg with the new variabley,= /N and in NO-D2  [(N+13) g N
the asymptotic Nl large limit approximate the summations (Trﬁ”)NzE i 2 - p —, (36)
for y, by integrals fory, as sp 27 [N+(n/2)]"? \detD S
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FIG. 2. The ratio of (Tt ?), calculated via the asymptotic formu(a6)
to its value computed by numerical integration.

which is our main result. Fon=1 this formula gives the
result of[7] as it should.

Finally, we draw attention to the close connection be-

tween the generalized periodic orbits of the systemRAS.
The stability matrix of a general periodic orlipo) is ex-
pressed as

J=3,-35-35----J,, (37
Pk 1
f (X ) — ———=f"(Xp)
TR Y T
Jk: (38)
K
[ (%012 £ (Xe)

The determinant 0D?S can be expressed with the help of
the stability matrix as

detD?S,=de{(J,—1). (39
This way we reformulate Eq36) as
N(nfl)lz F(N+%) efNInSp
(TrLMy=—5— (40

[N+ (n/2)]"2 %o de(1—-J,)’
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where the summation runs over generalized periodic orbits,
with nonzero momentum. This is fully analogous to a trace
formula and is our main result.

Finally we turn toward testing our result obtained so far.
In [7] we developed a contour integral method to calculate
high-order noise corrections to the trace &f We showed
that the agreement between the exact results and a formula
that coincides with the Eq(36) in the n=1 case is very
good. Now we step ahead and produce numerically high-
order noise corrections to the trace 6f. We shall start
from Eg. (27) by transforming the integrals ip back to
integrals inx as

2jp! (2]

( In (2mi)"2N iy, Shia=o 1! o

y dxq- - -dx,
[Xg— F(X)1P1F L Xy = F (X 1) ]2 *
(42)

The contours at Eg(27) were around thep;=0 points, so

the contours above are placed around the original periodic
orbits of the system, defined by Ed6) and(7). These con-
tour integrals can be evaluated numerically. Figure 2 shows
the ratio of (Tr£?2)y obtained from Eq(36) and evaluated
via the procedure described above as a functioN.of

In summary, we have studied the evolution operator for a
discrete Langevin equation with a strongly hyperbolic clas-
sical dynamics and a Gaussian noise distribution. Using an
integral representation of the evolution operafowe have
revealed the asymptotic behavior of the corrections to the
trace of£". This behavior is governed by subdominant terms
corresponding to terms previously neglected in the perturba-
tive expansion, and a fully analogous trace formula can be
derived for the late terms in the noise extension series of the
trace of £".
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